On Regressive Ramsey Numbers
نویسندگان
چکیده
منابع مشابه
Regressive Ramsey Numbers Are Ackermannian
We give an elementary proof of the fact that regressive Ramsey numbers are Ackermannian. This fact was first proved by Kanamori and McAloon with mathematical logic techniques. Nous vivons encore sous le règne de la logique, voilà, bien entendu, à quoi je voulais en venir. Mais les procédés logiques, de nos jours, ne s’appliquent plus qu’à la résolution de problèmes d’intérêt secondaire. [1, 192...
متن کاملSharp thresholds for hypergraph regressive Ramsey numbers
The f -regressive Ramsey number R f (d, n) is the minimum N such that every colouring of the d-tuples of an N -element set mapping each x1, . . . , xd to a colour ≤ f(x1) contains a min-homogeneous set of size n, where a set is called min-homogeneous if every two d-tuples from this set that have the same smallest element get the same colour. If f is the identity, then we are dealing with the st...
متن کاملClassifying the phase transition threshold for unordered regressive Ramsey numbers
Following ideas of Richer (2000) we introduce the notion of unordered regressive Ramsey numbers or unordered Kanamori-McAloon numbers. We show that these are of Ackermannian growth rate. For a given number-theoretic function f we consider unordered f -regressive Ramsey numbers and classify exactly the threshold for f which gives rise to the Ackermannian growth rate of the induced unordered f -r...
متن کاملZarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کاملOn weighted Ramsey numbers
The weighted Ramsey number, wR(n, k), is the minimum q such that there is an assignment of nonnegative real numbers (weights) to the edges of Kn with the total sum of the weights equal to ( n 2 ) and there is a Red/Blue coloring of edges of the same Kn, such that in any complete k-vertex subgraph H, of Kn, the sum of the weights on Red edges in H is at most q and the sum of the weights on Blue ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2002
ISSN: 0097-3165
DOI: 10.1006/jcta.2002.3287